Alpha Moisture Systems

DS1500 Dewpoint Hygrometer Display For AMT, AMT-Ex and PDT Transmitters

3173 DS1500 User Manual

Contact Information

Head Office Alpha Moisture Systems Alpha House 96 City Road Bradford West Yorkshire BD8 8ES United Kingdom

Tel: +44 (0) 1274 733100

Email: info@amsystems.co.uk Website: amsystems.co.uk

Office Opening Hours: Monday - Thursday 8.30am - 5.30pm (UK TIME) Friday 8.30am - 5.00pm Saturday and Sunday - Closed

Authorised Distributor Contact Information

Contents

1		uction	
	1.1 Ex	planation of Warning and Note Symbols used	5
	1.2 Sat	fety Information and Warnings	5/6
	Cle	eaning	6
	1.3 Wa	arranty	7
	1.4 Ins	strument Description	7
	1.5 Ge	neral arrangement of the front panel	8/9
2	QUICK	START Guide	9/10
3	Setting	up Alarms	10/11
	3.1 Ala	arm Timer	12
	3.2 Ala	arm Initial Blocking	12
4	Specia	l Functions	13
5	Proces	s Variable Retransmission	14
	5.1 Au	xiliary 24 Vdc Power Supply – Auxiliary P.S	14
6	Installa	ation	14
	6.1	Installation Recommendations	14/15
	6.2	Electrical Connections for wiring a 2 wire AMT	and PDT
		Transmitters	15
	6.3	Electrical Connections for wiring a 3 wire AMT	-Ex
		Transmitter	16
	6.4	Analog Output	17
7	Progra	mming the DS1500 Dewpoint Hygrometer Display	y17
	7.1	Work Level	17
	7.2	Alarm Level	18
	7.3	Functional Level	18/19
	7.4	Configurational Level	19/20
	7.5	Table – Sequence of levels and Parameters	21
8	Trouble	eshooting	21/22
	8.1	Special Recommendations	22

DS1500 Dewpoint Hygrometer Display

9	Serial (Communications	22
	9.1	RS485 Interface: Electrical Connections	23
	9.2	Reduced Registers Table for Serial Communicati	ons23
	9.3	Holding Register Table	23/24
10	Specifi	cations	24

Introduction 1

This User Manual is only for use with the instrument supplied. All information required for the safe and proper operational use of the instrument is contained here. Make sure you read and understand the information and instructions in this User Manual before using the instrument. Failure to operate the instrument as directed in this User Manual may:

- Impair the inbuilt safety protection offered by the instrument
- Expose personnel to risk of injury
- Cause damage to and/or impair the function of the instrument
- Invalidate the instrument warranty

1.1 **Explanation of Warning and Note Symbols used**

Local health and safety regulations should be observed as should the safety critical warnings and notes highlighted in this user manual.

WARNING		
<u>^</u>	Danger to personnel and/ or damage to equipment	

	NOTE
i	Additional information

1.2 **Safety Information and Warnings**

These safety instructions and guidelines must be followed.

The **DS1500** is designed to be connected to hazardous electric voltages (90-250V). The power supply must be protected by a 3 amp fuse.

The DS1500 must be earthed.

Check to establish that all wiring and connections are not damaged. If damage is observed to any electrical wiring or damage to the apparatus, they must not be connected to the power supply but returned to the supplier for rectification.

Before powering up the unit, check that the connections at the back of the unit have been wired correctly. Observe the wiring diagrams in Section 6.2 & 6.3, pages 15 & 16.

Do not connect the **DS1500** to the power supply until it is in a permanent position.

Risk of electric shock - Do not open any part of the **DS1500** whilst connected to the power supply.

Remove the power supply and isolate before any maintenance is carried out.

The power supply terminals and associated internal circuitry are isolated from all other parts of the equipment in accordance with EN61010-1 for connection to a category II supply (pollution degree2).

Any terminals or wiring connected to the input or outputs, which are accessible in normal operation, must only be connected to signals complying with the requirements for Safety Extra Low Voltage (SELV) circuits.

Hazardous voltages may be present on instrument terminals. The equipment must be installed by suitably qualified personnel and the instrument must be mounted in a position that provides protection behind the panel to at least IP20.

Ignoring this safety information can result in severe personal injury and/or damage to the unit. The product specifications **must not** be exceeded at any time as this may cause damage to the apparatus or cause risk of damage or fire.

Ensure that the **DS1500** does not come into direct contact with water or any other liquids.

Cleaning:

Disconnect the power supply first. To maintain the instrument, never use harsh abrasive cleaners or solvents. Wipe the instrument only with a soft cloth slightly dampened with warm soapy water.

Maintenance:

There are no serviceable parts in a DS1500 – For more advice contact Alpha Moisture Systems.

1.3 Warranty

The DS1500 is supplied with a one-year warranty from the date of purchase. This warranty is subject to the proper operational use of the instrument and following the information provided in this User Manual. The instrument should not be repaired without prior inspection or authorisation by Alpha Moisture Systems or an authorised distributor. Any unauthorised alteration or misuse may invalidate the instrument warranty.

NOTE

Please retain the original equipment packaging so the DS1500 can be returned to Alpha Moisture Systems or your authorised distributor if required.

1.4 Instrument Description

DS1500 is a digital dewpoint hygrometer display which accepts a large variety of input signals and sensors. It is fully compatible with Alpha Moisture Systems' AMT, AMT-Ex and PDT Dewpoint Transmitters. A six-digit LED display shows measured value and all programming parameters.

Instrument configuration is achieved from the keypad, without and hardware change. Thus, the selection of input type and alarms modes, besides other special functions, are accessed and defined from the front keypad.

Some of the features are:

- Customized indications.
- 24 Vdc power supply for remote transmitter excitation.
- Memory for maximum and minimum values.
- Hold and Peak Hold functions.
- Digital input.
- Increasing or decreasing display.
- Process Variable (PV) retransmission in 0-20 mA or 4-20 mA.
- RS485 / MODBUS RTU serial communication.
- 4 alarm relays 2 x change over, 2 x normally open (NO).

1.5 General arrangement of the front panel

Status Display: Shows the process variable (PV) and the programming prompts.

Indicators A1, A2, A3, and A4: Show active alarms.

Indicators Rx and Tx: Indicate RS485 (MODBUS) communication line is active.

FUNCTION key: This special function key is used for preprogrammed functions as explained in the special function key section of this manual.

PROGRAM key: This key is used to access different displays with the programmable parameters of the device.

UP / MAX and DOWN / MIN key: These keys are used to increase and decrease parameters values. These keys are also used to display maximum and minimum values stored in memory.

BACK key: This key is used to go back to the previous parameter displayed in the menu level.

These parameters are divided in five levels (or groups) of parameters which we will refer to as LEVELS.

LEVEL	ACCESS
1 - Work	Free access
2 - Alarms	
3 - Functions	
4 - Configuration	Reserved access
5 - Customized Linearization	
6 - Calibration	

The work level has free access. All other levels require a certain combination of keystrokes to be accessed. The combination is:

P and keys pressed simultaneously

Once within a level, just press P to move to the subsequent parameters of this level. At the end of each level the display will go back to the work level.

Note: To access the calibration level, however, it is required to press the keys P and simultaneously for 10 seconds. The first parameter in this level is presented (I n.Loc) indicating that the calibration level is enabled.

After reaching the intended prompt just press the work keys to change this parameter accordingly. All changes are recorded in nonvolatile memory as we move to next prompt. After 25 seconds with no key pressed the digital panel meter will return to the measuring level (work level).

2 QUICK START Guide

To get started quickly, there is no need to go through all the menus on the DS1500 at this stage. The DS1500 has been configured to order specifications.

Follow these step-by-step instructions below for a fast set up and quick start to measuring.

- Unpack the Control Unit and Transmitter only when they are ready to be installed.
- 2. Read the safety instructions in Section 1.1 and 1.2, pages 5 and 6
- 3. Make a location for the DS1500. For dimensions see Section 10, page 24
- 4. Make ready and seal all pipework for sampling
- Unpack and wire up the DS1500 display unit, see Section 6.2/6.3, pages 15/16
 DO NOT power up at this stage
- 6. Unpack and very carefully insert the transmitter into the Transmitter/Sensor holder and connect to the DS1500 display unit
- 7. Purge the gas to be sampled through all pipework and sensor holder
- 8. Re-check all connections and wiring NOW power up the DS1500

The screen will now look like this for example:

(In this case we have used the value -86.7 in °C unit)

9. If the display is still changing, allow this to settle before taking final reading.

NOTE

Time to settle can vary between a few minutes and several hours dependant on the condition of the sample tubing on start-up. Time can be affected by for example, temperature, pressure, sample moisture content and other factors. Take a final reading when the display is static.

10. If alarms are to be set at this stage see Section 3 below.

3 Setting up Alarms

The DS1500 Dewpoint Hygrometer Display has 4 alarm outputs. Each alarm has a corresponding LED message in the front panel to indicate alarm status.

3.1 Alarm Functions

The alarms can be set to operate in seven different modes. These modes are shown in **Table 2**, **page 11** and described below. The alarm can also be set as 'disabled'.

Break alarm - I Err

The break alarm is triggered whenever the input sensor breaks or is badly connected.

Low alarm - Lo

The alarm relay is triggered whenever the measured value is below the alarm set point.

• High alarm - H ,

The alarm relay is triggered whenever the measured value is above the alarm set point.

• Differential low - d .F.Lo

Deviation alarm. Alarm relay is triggered whenever the difference (deviation) between the Process Variable and the reference value (FLrEF) is lower than the

values defined in **5P.AL**. For this function, the triggering point is defined as: (**ALrEF** – **5P.AL**)

• Differential High - d .F.H .

Deviation alarm. Alarm relay is triggered when the difference (deviation) between the Process Variable value and the reference value (<code>FLref</code>) is greater than the value defined in <code>SPAL</code>. For this function, the triggering point is defined as: (<code>FLref</code> + <code>SP.FL</code>)

• Differential (or Band) out of range — d ·F.au Deviation alarm. Alarm relay is triggered when the difference (deviation) between the Process Variable value and the reference value (ALrEF) has its modulus greater than the value configured in 5PAL. For this function, the triggering point is defined as: (ALrEF – 5P.AL) and (ALrEF + 5P.AL)

• Differential (or Band) within range - d .F.I n

Deviation alarm. Alarm relay is triggered when the difference (deviation) between the Process Variable value and the reference value (RLrEF) has its modulus lower than the value defined in SPRL. For this function, the triggering points are defined as: (RLrEF - SP.RL) and (RLrEF + SP.RL)

TYPE	PROMPT	ACTION
Disabled	oFF	Alarm is inactive
Break Alarm (input Error)	1Err	Alarm will go ON if sensor breaks
Low Alarm (<i>Low</i>)	Lo	Alarm SP
High Alarm (Hi gh)	н.	Alarm SP
Differential Low (differential Low)	d FLo	AL SP + Deviation AL SP
Differential High (differential High)	d.FH.	AL SP AL SP + Deviation
Differential out of range (differential out)	d F.ou	Positive Deviation AL SP - Deviation AL SP AL SP + Deviation
Differential within range (differential Within)	d F. In	ALSP - Deviat. ALSP ALSP + Deviation

Table 2 - Alarm functions

3.1 Alarm Timer

The alarms can be configured to perform timing functions. The configuration allows the alarm output to be delayed, or to deliver a single pulse or a train of pulses. The delay, the pulse width and the period are defined by the user.

Table 3 below shows these advanced functions. Times T1 and T2 can be programmed from 0 to 6500 seconds and are define during configuration (**see ALARM LEVEL section on page 18**). Programming 0 (zero) in the timer parameters T1 and T2 disables the timer function.

The LEDs associated with the alarm always light up when the alarm condition occurs, regardless of the current state of the output relay, which may be de-energized momentarily due to a time delay.

ADVANCED FUNCTION	T1	T2	ACTION
Normal Operation	0	0	Alarm Output Alarm Event
Delayed	0 +	1 s to 6500 s	Alarm T2 → Alarm Event
Pulse	1 s to 6500 s	0 .	Alarm Output T1
Oscillator	1 s to 6500 s	1 s to 6500 s	Alarm Output T1 T2 T1 T1

Table 3 - Timer alarm functions

3.2 Alarm Initial Blocking

The **Initial Blocking** option inhibits the alarm from being recognized if an alarm condition is present when the controller is first energized. The alarm will be triggered only after the occurrence of a non alarm condition followed by a new occurrence for the alarm.

The Initial Blocking is disabled for the **Break Alarm** function.

4 Special Functions

Maximum and Minimum

The digital panel meter memorizes the measured maximum and minimum values (peak and valley). These two values are shown when pressing the MAX or MIN keys.

Pressing both keys simultaneously will clear the memory for a new peak and valley detection.

Special Function Key and Digital Input

The key (special function key) in the frontal panel and the optional digital input can execute special functions according to the user selection shows how to activate the digital input. The special functions for the key and for the digital input are explained as it follows.

• Hold - Freeze measured value

The **Hold** function freezes the measured value showed in the display. This function is toggled each time the key is pressed, or the digital input is selected. Whenever the digital panel meter is in the **Hold** mode a **Hold** message is briefly displayed to show the operator that the displayed value is the frozen value and not

• PHoL d - Maximum value

the current input reading.

The Peak Hold function shows the maximum value measured since the last time key was pressed, or the digital input activated.

Each activation of the key or digital input triggers a new **Peak Hold** level and the

Each activation of the key or digital input triggers a new **Peak Hold** level and the display resets with a new peak value.

• r5L - Clears maximum and minimum

This function works the same way as the **MAX** and **MIN** keys pressed simultaneously, as explained in the **Maximum and Minimum** section above.

If this **r5**£ function is programmed, every touch of the **(b)** key or activation of the digital input will clear the memory and a new level of maximum and minimum values memorization will start.

5 Process Variable Retransmission

As an option, the digital panel meter can be supplied with an isolated 0-20 mA or 4-20 mA analog output for Process Variable (PV) retransmission. Available at the back panel terminals 29 and 30. When this option is available, retransmission will be always active, so that the user will not be required to turn it on or off.

The PV values that define the scale of the 0 mA / 4 mA to 20 mA retransmission can be programmed by the user in the **high and low output limits** (Du.LoL and Du.H L), at configuration level. High and low limits can be freely programmed, even with a low limit higher than high limit, resulting in a reversed retransmission signal (decreasing signal when PV increases).

For a voltage output signal, an external shunt (calibrated resistor) should be installed at the analog output terminals.

5.1 Auxiliary 24 VDC Power Supply – Auxiliary P.S.

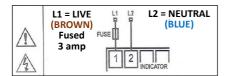
The digital panel meter provides a voltage power supply of 24 Vdc to excite field transmitters with 25 mA current maximum capacity.

Available at the back panel terminals 16 and 17.

6 Installation

The digital panel meter is designed to be panel mounted. Remove the two plastic fixing clamps from the instrument, insert the unit into the panel cut-out and slide firmly the fixing clamps from the rear against the panel.

6.1 Installation Recommendations


- Input signal wires should be laid out away from power lines and preferably inside grounded conduits.
- Instrument mains (line) supply should be suitable for this purpose and should not be shared.
- In controlling and monitoring applications, consequences of any system failure must be considered in advance. The internal alarm relay does not warrant total protection.

 Use of RC filters (47 R and 100 nF, serial) are highly recommended when driving solenoids, contactor coils or other inductive loads.

6.2 Electrical Connections for wiring a <u>2 wire AMT</u> or <u>PDT</u> Dewpoint Transmitter

POWER

The input signals and power connections are shown in Figure 1a.

ALM3 3 9 25 D1 28 26 DO >RS485 / MODBUS COMMS C 27 13 14 15 DIGITAL AUXILIAR 17 to 24 Link INPUT 1 2 Wire 23 Blue + Pos AMT or PDT - Neg Transmitters Loop Powered

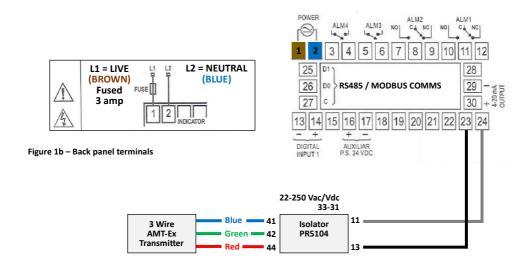

ALM2

Figure 1a - Back panel terminals

The maximum size of the protective fuse is 3A and, together with the power switch, it should be easily accessible and close to the DS1500. The power switch should be marked with a label indicating it will turn OFF the voltage to the DS1500.

6.3 Electrical Connections for wiring a 3-wire AMT-Ex Dewpoint Transmitter

Figures 1a and 1b shows the connections for 4-20 mA transmitter powered by the 24 V power supply of the DS1500 Dewpoint Hygrometer Display.

6.4 Analog Output

The **DS1500** can deliver either 0-20 mA or 4-20 mA analog output, depending on how the instrument is configured. The output is available at terminals **29** and **30**.

7 Programming the DS1500 Dewpoint Hygrometer Display

7.1 Work Level

This is the first level. At power up the digital panel meter will display the Process Variable (PV). The alarm triggering points are also displayed at this level (alarm Setpoints).

To advance in this level simply press **P** .

8.8.8.8.8.	PV measurement. Shows the measured variable.	
0.0.0.0.		
	For 4-20 mA inputs the display shows the values defined	
	in the In.LoL and In.HIL parameters.	
	With the hold function programmed the display shows	
	the frozen variable and alternates with the message	
	HoLd.	
	Likewise, with Peak Hold function programmed the high	
	limit is displayed with the P.HoLd prompt alternately.	
	Should any fault situation occur the DS1500 display will	
	display an error message which can be identified at the	
	Troubleshooting section on pages 21/22.	
AL.rEF	Differential Alarm Reference Value. This prompt is	
	shown only when there is an alarm programmed with	
	differential function. This value is used as a	
	reference for differential alarms triggering.	
SP.AL I	Alarms Setpoints 1, 2, 3 and 4. Defines the	
SP.AL2	operation point of each alarm programmed with La	
SP.AL3	or H , functions.	
SP.AL4	When an alarm is programmed with a differential	
	function, the alarm setpoint value represents the	
	deviation value of the alarm relative to the reference	
	AL.rEF.	

7.2 Alarm Level

Fu.AL I	Alarm Function - Defines functions for the alarms 1,
Fu.AL2	2, 3 and 4, configured in Alarm Functions section on
Fu.AL3	pages 10/11 and 18
Fu.AL4	□FF Alarm off
	I Err Broken or Shorted Sensor
	Low value
	H , High value
	d .F.Lo Differential low
	d .F.H ، Differential high
	ם וּבּ. Differential outside the range
	d ւFI ո Differential within range.
HY.AL I	Alarm Hysteresis. This is the difference from the
HY.AL2	measured value to the point where the alarm is
HY.AL3	turned ON and OFF.
HY.ALY	
bl.AL I	Alarm Blocking. Should any alarm condition occur,
PT'US	the alarms can be individually disabled when
ьь.ALЭ	energizing the digital panel meter.
bl.AL4	
AL IL I	Alarm Timer. The user can set delayed, momentary,
AL IEZ	or sequential alarms by configuring times T1 and T2
ALZE I	according to Table – Sequence of Levels and Parameters
ALSFS	on Page 21.
AL3E I	To disable this function just set zero for T1 and T2.
AL3F5	
AL4E I	
AL4F5	

7.3 Function Level

F.Func	key. The available options are: oFF Key not used. Houd Hold PV. 55 Resets Peak and Valley (MAX and values)
	r5£ Resets Peak and Valley (MAX and values). P_HoL Peak Hold.

n 16. p	These functions are described in detail in the Special Function Key and Digital Input Section on page 13 section. Digital Input Function. Defines the function for the digital
	input. The available functions are the same as for key: oFF - HoLd - rSt - PHoLd
	These functions are described in detail in the
	Special Function Key and Digital Input Section on page
	13 section.
Filtr	Input Digital Filter. Adjustable from 0 to 60, this is
	used to reduce instability of the measured value.
	0 means the filter is off and 60 means maximum
	filtering. The higher the filter value, the slower the
	response.
oF5Et	Display Offset. This a value which is added to the
	PV to offset any measurement deviation or sensor
	error. The offset is shown in the programmed
	engineering unit. For °F measurements the null
	reference is at 32 °F.
bAud	Baud Rate. Serial digital communication speed in kbps.
	Programmable: 1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, 115.2 (no parity).
	1.2P, 2.4P, 4.8P, 9.6P, 19.2P, 38.4P, 57.6P and
	115.2P (with EVEN parity).
AdrES	Communication Address. A number that identifies
	the instrument in a multidrop network.

7.4 Configuration Level

* = Factory Set – Do Not Adjust

I n.EYP	Input type. Selects the input signal or sensor type to be connected to the PV terminals. Refer to Table 1 for options. * Changing the input type causes all other parameters related to PV and alarms to be changed as well, therefore, this parameter shall be the first to be set.
dP.PoS	Decimal point position . Defines the decimal point
	position in the displayed value. Continued next page

It is displayed when linear input types 0-50 mV, 0-5V,
0-10 V, 0-20 mA or 4-20 mA are selected at the
I n.EYP prompt.

* = Factory Set – Do Not Adjust

5.root	* Square root. This prompt is only shown when input types 0-50 mV, 0-5 V, 0-10 V, 0-20 mA or 4-20 mA are selected at the In.LYP prompt. Set YE5 and the square root will be applied to the measured value within the limits programmed in In.LoL and In.H.L. The display will show the low limit (In.LoL) value should the input signal be below 1 % of the range.
Scale	 ★ Scale. Defines the indication range for linear inputs (0-50 mV, 0-5 V, 0-10 V, 0-20 mA and 4-20 mA). ☑ Configurable indication from – 31000 to + 31000. ☑ Configurable indication from 0 to + 60000. ☑ Configurable indication from 0 to +120000. Only even values will be displayed (resolution is not improved). The selected scale affects values of PV, alarm setpoints and Offset.
I n.LoL	Input low limit. Sets the low limit for input type 0-50 mV, 0-5 V, 0-10 V, 0-20 mA or 4-20 mA. The range created may have increasing or decreasing behaviour in relation to the input signal behaviour.
In.H iL	Input high limit. Sets the high limit for input type 0-50 mV, 0-5 V, 0-10 V, 0-20 mA or 4-20 mA. The range created may have increasing or decreasing behaviour in relation to the input signal behaviour.
Out.E9	Analog output type. Selects the analogue output type to either 0-20 mA or 4-20 mA.
Ou.LoL	Low limit for analogue retransmission. Defines the PV value that results in a 4 mA (or 0 mA) analogue output current.
Du.H 1L	High limit for analogue retransmission. Defines the PV value that results in a 20-mA analogue output current.
Out.Er	4-20 mA output behaviour in case of failures. Defines the output as 4-20 mA when there is an error in the indication. do Applies a value < 4 mA. UP Applies a value > 20 mA

7.5 Table - Sequence of Levels and Parameters

This table shows the sequence of levels and parameters presented in the display. There are parameters that must be defined for each alarm available.

Work	Alarm Level	Function	Config	Customised	Calibration
Level		Level	Level	Linearisation Level	Level
8.8.8.8.	# Fu.AL I	F.Fun[I n.EYP	InP.01 - InP.30	I n.LoC
AL.rEF	# dF.AL I	n I.B. b	dP.PoS	Out.01 - out.30	I n.HI [
#5P.AL 1	# HY.AL I	Filtr	Uni E		Ou.LoC
	# bl.Al I	oF5EL	Sroot		05.HI C
	# AL.IL I	ЬАлд	ScALE		[J Lo
	# AL.162	AdrE5	I n.LoL		H.LYPE
			I n.H ıL		
			Out.E9		
			Ov.LoL		
			Ou.H 1L		
			Out.Er		

[#] Parameters that require definition for each available alarm.

8 Troubleshooting

Connection errors or improper configuration will result in malfunctioning of the digital panel meter. Carefully revise all cable connections and programming parameters before operating the unit.

Some error messages will help the user identify potential problems.

Message	Possible Problem
טטטטט	Measured value is above the value allowed for the
	selected sensor or above the configured input
	signal limit.
חחחחח	Measured value is below the value allowed for the
	selected sensor or below the configured input
	signal limit.
	Open input. No sensor is connected, or the sensor is
	broken.
Err 1	Pt100 cable resistance is too high, or the sensor is badly
	connected.

Different messages other than the ones above should be reported to the manufacturer. Please inform the serial number if this should occur. The serial number can be viewed at the display by pressing the wey for about 3 seconds. The software version of the instrument can be viewed at the time the unit is powered.

When not properly configured, the instrument may show false error messages, particularly those related to the type of input selected.

8.1 Special Recommendations

Should the digital panel meter be repaired, some special handling care should be taken. The device must be withdrawn from the case and immediately placed in an anti-static wrap; protected from heat and humidity.

9 Serial Communication

The digital panel meter can be supplied with an asynchronous RS485 digital communication interface for master-slave connection to a host computer (master). The digital panel meter works as a slave only and all commands are started by the computer which sends a request to the slave address.

The addressed unit processes the command and sends back the answer. Broadcast commands (addressed to all units in a multidrop network) are accepted but no response is generated.

Features

- RS485 compatibility with two-wire bus from the host to up to 31 slaves in a multidrop network topology.
- Up to 247 units can be addressed by the MODBUS RTU protocol.
- Maximum network distance: 1000 m.
- Disconnection time: Maximum of 2 ms after the delivery of the last byte.
- Communication signals electrically isolated from the rest of the instrument.
- Baud rate: 1200, 2400, 4800, *9600, 19200, 38400 or 57600 bps. * Default.
- Number of data bits: 8, without parity.
- Number of stop bits: 1
- Time to start response transmission: 100 ms maximum delay after acknowledging the command.
- Protocol: MODBUS (RTU)

Two parameters must be configured to use the serial communication interface: Communications Baud Rate (bflud) and the Communication Address (fldrE5).

9.1 RS485 Interface: Electrical Connection

The RS485 signals are:

D1	Bidirectional data line	Terminal 25
D0	Inverted bidirectional	Terminal 26
	data line	
С	Optional connection.	Terminal 27
	Improves	
	communication	
	performance for	
	long cable runs.	

9.2 Reduced Registers Table for Serial Communication

Communication Protocol

The MOSBUS RTU slave is implemented. All configurable parameters can be accessed for reading or writing through the communication port. Broadcast commands are supported as well (address 0).

The available Modbus commands are:

01 – Read Coils	05 – Write Single Coil
03 - Read Holding Register	06 - Write Single Register

9.3 Holding Register Table

Follows a description of the usual communication registers.

For full documentation of the **Registers Table for Serial Communication** contact Alpha Moisture Systems.

All registers are 16-bit signed integers.

Address	Parameter	Register Description
0000	PV	Read: Process variable.
		Write: Not allowed.
		Range: The minimum value is in I nLoL. The
		maximum value is in
		InHIL. The decimal point position
		depends on dPPo5 .
0003	PV	Read: Normalized Process Variable.
		Write: Not allowed.
		Maximum range: 0 to 120000.

0004	Display	Read: Current display value.
	Value	Write: Current display value.
		Maximum range: -31000 to 31000.
		The range depends on the showed display.

10 Specifications

	250 g 45 x 93 mm (+0.5 -0.0 mm)
Environmental Conditions:	
Operating temperature:	5 to 50 °C
	80 % up to 30 °C
	for temperatures above 30 °C, decrease 3 % per °C
install	ation category II, pollution degree 2, altitude < 2000 m
	Keyboard selection of input type (refer to Table 2)
Internal resolution:	
Display resolution:	
	1/0.1/0.01/0.001/0.0001
	DIN 43760 standard (α = 0.00385)
	cable resistance compensation
	0-20 mA or 4-20 mA, 500 Ω max. 4000 levels, Isolated
	ALM1, ALM2: SPDT 3 A / 240 Vac (3 A / 30 Vdc Res.)
	13, ALM4: SPST-NO: 1.5 A / 250 Vac (3 A / 30 Vdc Res.)
	EN 61326-1:1997 and EN 61326-1/A1:1998
	EN61010-1:1993 and EN61010-1/A2:1995
Specific Connections for Type	•
	IP65, polycarbonate UL94 V-2
3	3 seconds after power up
	CE, UKCA
Warranty:	12 months